The endogenous retroviral envelope protein syncytin-1 inhibits LPS/PHA-stimulated cytokine responses in human blood and is sorted into placental exosomes

No votes yet


Objectives: To examine whether syncytin-1 has immune regulatory functions and is carried by human placental exosomes. Further, to examine whether corticotropin-releasing hormone (CRH) can induce the production of syncytin-1. Study design: Human placental exosomes were isolated from placental explant, primary trophoblast and BeWo cell cultures. The presence of exosomes was confirmed by transmission electron microscopy and western blotting. Exosomal protein was probed with 3 separate antibodies targeting syncytin-1. Syncytin-1 immunosuppression was tested, using either a syncytin-1 recombinant ectodomain protein or a synthetic peptide with the human syncytin-1 immunosuppressive domain sequence, in an in vitro human blood culture system immune challenged with LPS or PHA. The inhibition of cytokine production by syncytin-1 was determined by ELISA of TNF-alpha, IFN-gamma and CXCL10. BeWo cells were stimulated with CRH or vehicle for 24 h. mRNA and Protein was extracted from the cells for real-time PCR and western blotting analysis while exosomes were extracted from conditioned media for analysis by western blotting. Results: Protein expression of syncytin-1 was detected in exosomes isolated from placental explants, primary trophoblast and BeWo cell cultures. Syncytin-1 recombinant ectodomain was also shown to inhibit the production of the Th1 cytokines TNF-alpha and IFN-gamma as well as the chemokine, CXCL10 in human blood cells. Finally, this study showed that syncytin-1 can be stimulated by CRH. Conclusions: The presence of syncytin-1 in placental exosomes provides a mechanism for syncytin-1 to reach and interact with target cells of the maternal immune system and represents a novel mechanism of endogenous retroviral mediated immunosuppression that may be relevant for maternal immune tolerance. (c) 2012 Elsevier Ltd. All rights reserved.